Gruppo di ricerca del Politecnico di Milano, studio per controllare la proprietà della luce
Scoperta da un gruppo di ricerca del Politecnico di Milano una nuova strada verso l’elettronica del futuro che permette di compiere nuovi passi avanti nell’ottica, nella fotonica e nella tecnologia dell’informazione e, tra i possibili traguardi, potrà rendere più potenti i computer di generazione futura. Lo studio, appena pubblicato sulla prestigiosa Nature Photonics, dimostra la possibilità di controllare le proprietà della luce per ottimizzare l’iniezione di carica di un materiale semiconduttore riducendo contemporaneamente la quantità di energia immessa, un risultato fondamentale per lo sviluppo futuro di dispositivi opto-elettronici.
“Siamo orgogliosi di questo risultato perché costituisce il primo passo per potere pensare a dispositivi innovativi che vadano oltre quelli attuali nel campo della fotonica e dell’elettronica”, commenta con l’Adnkronos Matteo Lucchini, autore di riferimento dello studio e professore associato del Dipartimento di Fisica del Politecnico di Milano. Insieme a Lucchini l’importante scoperta è stata realizzata da un gruppo di ricercatori del Dipartimento di Fisica del PoliMi, in collaborazione con tre Istituti di ricerca del Consiglio nazionale delle ricerche – Istituto di fotonica e nanotecnologie (Cnr-Ifn), l’Istituto per la microelettronica e microsistemi (Cnr-Imm) e l’Istituto nanoscienze (Cnr-Nano). Al lavoro ha partecipato anche un gruppo di ricerca dell’Università degli Studi di Salerno.
I ricercatori hanno scoperto un nuovo regime di interazione radiazione-materia
Lo studio, intitolato Field-driven attosecond charge dynamics in germanium, rappresenta un risultato verso la realizzazione di interruttori elettro-ottici ultraveloci tali da aumentare la velocità limite con cui si processano i dati e si codifica l’informazione. I ricercatori hanno osservato il fenomeno dell’iniezione ultraveloce di portatori di carica in un materiale semiconduttore quale il germanio monocristallino, con tecniche spettroscopiche alla scala temporale dell’attosecondo e hanno scoperto un nuovo regime di interazione radiazione-materia dove le cariche vengono eccitate da meccanismi diversi. I ricercatori spiegano che questi meccanismi competono tra loro ed evolvono su scale temporali differenti, dell’ordine dei pochi milionesimi di miliardesimo di secondo.
Matteo Lucchini sottolinea: “sono risultati significativi perché la conoscenza dei processi di eccitazione indotti dalla luce nei semiconduttori permette di progettare dispositivi optoelettronici di nuova concezione che ottimizzano il rapporto tra velocità di iniezione di carica e potenza dissipata”. I ricercatori sono riusciti a districare il complesso regime di iniezione di carica su queste scale temporali estreme grazie agli esperimenti condotti presso l’Attosecond Research Center nell’ambito del progetto ERC AuDace (Attosecond Dynamics in AdvanCed matErials) e il progetto PRIN aSTAR.