Anche se in questo periodo di pioggia ne sentiamo particolarmente la mancanza l’esposizione prolungata e senza protezioni alla luce del sole è alla base dello sviluppo dei tumori della pelle. Per fortuna il nostro corpo possiede una serie di sistemi in grado di riparare i danni al DNA causati dai raggi ultra-violetti (UV). Se però anche questi sistemi non funzionano, come nel caso di diverse malattie genetiche, allora la possibilità di sviluppare melanomi e altri tipi di tumore è assai elevata.
Un gruppo di ricercatori dell’Università degli Studi di Milano, coordinato da Marco Muzi Falconi e Paolo Plevani, ha individuato il meccanismo molecolare che sta alla base del processo di riparazione del DNA dai danni da raggi UV, soprattutto quando si tratta di danni particolarmente gravi o estesi. I risultati sono stati pubblicati dalla rivista Molecular Cell. Ne abbiamo parlato con uno degli autori, il professor Muzi Falconi. Ecco le risposte che ha dato a ilsussidiario.net
Professor Muzi-Falconi, quali sono gli effetti dei raggi UV sul DNA?
I raggi UV sono in grado di determinare delle mutazioni a livello del DNA. In presenza di un efficiente sistema di riparazione questi difetti vengono rimossi. Il problema insorge quando questi meccanismi non funzionano più e quindi il DNA comincia ad accumulare mutazioni che nel tempo possono portare allo sviluppo di tumori e altre patologie.
Esiste una patologia in particolare in cui il sistema di riparazione è danneggiato?
Si, tra le più famose vi è lo xeroderma pigmentoso, in cui pazienti sono così sensibili alla luce da essere costretti a vivere perennemente al buio per limitare il rischio di danni agli occhi e tumori della pelle. Poi vi è la sindrome di Cockayne, caratterizzata da invecchiamento precoce, e la tricotiodistrofia che provoca ritardo nello sviluppo.
Come funziona il meccanismo di riparo?
Quando le radiazioni UV sono limitate, un insieme di proteine interviene per individuare ed eliminare il DNA danneggiato. Questo viene sostituito successivamente con una nuova copia in modo da far sopravvivere la cellula. Se invece il livello di raggi UV assorbito è troppo elevato intervengono i checkpoint. Sono dei punti di controllo che, bloccando temporaneamente la possibilità della cellula di replicarsi, e quindi diffondere in più copie la mutazione, consentono ad essa di avere più tempo per riparare il danno. I checkpoint costituiscono una barriera contro la formazione dei tumori e il loro malfunzionamento è una caratteristica comune delle cellule tumorali.
Qual è stato l’obbiettivo del vostro lavoro?
Abbiamo indagato in che modo una proteina, chiamata Exo1, sia in grado di individuare le lesioni più pericolose e soprattutto in che modo possa attivare i cosiddetti checkpoint descritti precedentemente.
Come si è articolata la ricerca?
Il lavoro è stato molto lungo; l’inizio del progetto infatti risale al 2003. Durante questi anni siamo andati a studiare i meccanismi di riparazione prima nelle cellule di lievito, che rappresentano un buon modello di studio, e poi in quelle umane. Nei precedenti studi abbiamo visto che le persone con xeroderma pigmentoso non erano in grado di attivare i checkpoint e quindi, oltre a non riparare il danno, accumulavano mutazioni. Nel lavoro attuale abbiamo voluto indagare quali fossero i principali responsabili del mancato riconoscimento del danno al DNA. Cercando tra le varie proteine coinvolte nel sistema di riparazione abbiamo individuato e analizzato l’attività di Exo1, responsabile dell’attivazione del checkpoint. In questo modo abbiamo dunque capito il complesso meccanismo molecolare con cui essa agisce.
Quali prospettive può aprire uno studio come il vostro?
Comprendere come lavorano nello specifico le proteine coinvolte nella riparazione dei danni è un passo avanti molto importante. Infatti ciò può aiutarci nella prospettiva di sviluppare applicazioni che potrebbero in futuro riguardare la prevenzione di varie patologie tra cui i tumori.
(a cura di Daniele Banfi)